Artificial intelligence in the management of civil aeronautics in Cuba: potential and challenges
Keywords:
Inteligencia artificial, gestión pública, automatización, gobernanza de datos, transformación digitalAbstract
To analyze the potential and challenges associated with the adoption of Artificial Intelligence (AI) in the management of the state-owned airline Cubana de Aviación, providing a tiered roadmap that has not previously been documented for state-owned enterprises with operational and budgetary constraints. Methodology: A descriptive and analytical approach is employed, complemented with documentary review and market intelligence sources. Three key technological pillars are examined: robotic process automation, natural language processing, and machine learning for dynamic price optimization, forming the basis of a tiered digitalization model. Results and Discussion: Progressive AI implementation can enhance administrative efficiency, customer experience, and institutional profitability, provided it is supported by solid data governance and effective organizational change management. Conclusions: AI constitutes a strategic tool to strengthen the economic and operational sustainability of Civil Aviation in Cuba. Contribution: This article demonstrates the potential of AI in improving the management of state-owned companies in Cuba and proposes a concrete adoption roadmap.
Downloads
References
Brynjolfsson, E., & McAfee, A. (2017). Machine, platform, crowd: Harnessing our digital future. W. W. Norton & Company.
Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 36(4), 1165–1188. https://doi.org/10.25300/MISQ/2012/36.4.03
Comisión Económica para América Latina y el Caribe (CEPAL). (2021). Datos y hechos sobre la transformación digital: Informe sobre los principales indicadores de adopción de tecnologías digitales en el marco de la Agenda Digital para América Latina y el Caribe. CEPAL. https://www.cepal.org/es/publicaciones/46766-datos-hechos-la-transformacion-digital-informe-principales-indicadores-adopcion
Comisión Económica para América Latina y el Caribe (CEPAL). (2023). Gobierno digital. CEPAL. https://www.cepal.org/es/temas/gobierno-digital
Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108–116. https://hbr.org/2018/01/artificial-intelligence-for-the-real-world
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008
Deloitte (2022). Global intelligent automation survey 2022. Deloitte Insights. https://www.deloitte.com/us/en/insights/topics/talent/intelligent-automation-2022-survey-results.html
European Commission. (2021). 2030 Digital Compass: The European way for the Digital Decade (COM/2021/118 final). Publications Office of the European Union.
Gartner (2023a). AI maturity & roadmap toolkit. Gartner. https://www.gartner.com/en/chief-information-officer/research/ai-maturity-model-toolkit
Gartner (2023b). Data lake definition and architecture overview. Gartner Glossary. https://www.gartner.com/en/information-technology/glossary/data-lake
Irani, Z., Abril, R. M., Weerakkody, V., Omar, A., & Sivarajah, U. (2023). The impact of legacy systems on digital transformation in European public administration: Lessons learned from a multi-case analysis. Government Information Quarterly, 40(1), 101784. https://doi.org/10.1016/j.giq.2022.101784
Janssen, M., Brous, P., Estevez, E., Barbosa, L. S., & Janowski, T. (2020). Data governance: Organizing data for trustworthy artificial intelligence. Government Information Quarterly, 37(3), 101493. https://doi.org/10.1016/j.giq.2020.101493
Kaplan, R. S., & Norton, D. P. (2008). The execution premium: Linking strategy to operations for competitive advantage. Harvard Business Press.
Khatri, V., & Brown, C. V. (2010). Designing data governance. MIS Quarterly, 34(4), 687–712. https://doi.org/10.2307/25750799
Kotter, J. P. (2012). Leading change. Harvard Business Review Press.
Marr, B. (2022). Big data: Using SMART big data, analytics and metrics to make better decisions and improve performance. Wiley.
Mazzucato, M. (2021). Mission economy: A moonshot guide to changing capitalism. Allen Lane.
McKinsey & Company (2023). The economic potential of generative AI: The next productivity frontier. McKinsey Global Institute. https://www.mckinsey.com/featured-insights/mckinsey-global-institute/the-economic-potential-of-generative-ai-the-next-productivity-frontier
McKinsey & Company (2024). Upskilling and reskilling priorities for the gen AI era. McKinsey & Company. https://www.mckinsey.com/capabilities/people-and-organizational-performance/our-insights/the-organization-blog/upskilling-and-reskilling-priorities-for-the-gen-ai-era
Müller, J. M., Buliga, O., & Voigt, K.-I. (2021). The role of absorptive capacity and innovation strategy in the digital transformation of organizations. Journal of Manufacturing Technology Management, 32(2), 420–441. https://doi.org/10.1108/JMTM-09-2019-0343
National Institute of Standards and Technology. (2024). The NIST Cybersecurity Framework (CSF) 2.0 (NIST CSWP 29). U.S. Department of Commerce. https://doi.org/10.6028/NIST.CSWP.29
Organization for Economic Co-operation and Development (OECD). (2023a). Government at a glance 2023. OECD Publishing. https://doi.org/10.1787/3d5c5d31-en
Organization for Economic Co-operation and Development (OECD). (2023b). The OECD digital government policy framework. OECD Publishing. https://www.oecd.org/en/publications/the-oecd-digital-government-policy-framework_f64fed2a-en.html
PwC. (2024a). Global annual review 2024. PwC. https://www.pwc.com/gx/en/global-annual-review/2024/pwc-global-annual-review-2024.pdf
PwC. (2024b). GenAI for next-gen governments. PwC. https://www.pwc.com/gx/en/government-public-services/assets/genai-for-next-gen-governments.pdf
PwC. (2024c). AI leadership maturity assessment. PwC. https://aimaturityassessment.my.pwc.com/
Rogers, E. M. (2003). Diffusion of innovations (5th ed.). Free Press.
Russell, S., & Norvig, P. (2022). Artificial intelligence: A modern approach (4th ed.). Pearson.
Vial, G. (2019). Understanding digital transformation: A review and a research agenda. MIS Quarterly, 43(1), 223–250. https://doi.org/10.25300/MISQ/2019/12910
Wamba, S. F., Gunasekaran, A., Akter, S., Ren, S. J. F., Dubey, R., & Childe, S. J. (2017). Big data analytics and firm performance: Effects of dynamic capabilities. Journal of Business Research, 70, 356–365. https://doi.org/10.1016/j.jbusres.2016.08.009
World Bank. (2022). Interoperability: Towards a data driven public sector (Equitable Growth, Finance and Institutions Insight – Governance). The World Bank. https://hdl.handle.net/10986/38520
Zuiderwijk, A., Chen, Y.-C., & Salem, F. (2021). Implications of the use of artificial intelligence in public governance: A systematic literature review and a research agenda. Information Polity, 26(4), 365–385. https://doi.org/10.3233/IP-210067
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Alejandro García Herrera, Roberto De Armas Urquiza

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.




