Artificial intelligence in the management of civil aeronautics in Cuba: potential and challenges

Authors

Keywords:

Inteligencia artificial, gestión pública, automatización, gobernanza de datos, transformación digital

Abstract

To analyze the potential and challenges associated with the adoption of Artificial Intelligence (AI) in the management of the state-owned airline Cubana de Aviación, providing a tiered roadmap that has not previously been documented for state-owned enterprises with operational and budgetary constraints. Methodology: A descriptive and analytical approach is employed, complemented with documentary review and market intelligence sources. Three key technological pillars are examined: robotic process automation, natural language processing, and machine learning for dynamic price optimization, forming the basis of a tiered digitalization model. Results and Discussion: Progressive AI implementation can enhance administrative efficiency, customer experience, and institutional profitability, provided it is supported by solid data governance and effective organizational change management. Conclusions: AI constitutes a strategic tool to strengthen the economic and operational sustainability of Civil Aviation in Cuba. Contribution: This article demonstrates the potential of AI in improving the management of state-owned companies in Cuba and proposes a concrete adoption roadmap.

Downloads

Download data is not yet available.

Author Biography

Alejandro García-Herrera, Corporación de la Aviación Cubana SA.

Ingeniero Informático.

Departamento de desarrollo tecnológico, Corporación de la Aviación Cubana SA.

References

Brynjolfsson, E., & McAfee, A. (2017). Machine, platform, crowd: Harnessing our digital future. W. W. Norton & Company.

Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 36(4), 1165–1188. https://doi.org/10.25300/MISQ/2012/36.4.03

Comisión Económica para América Latina y el Caribe (CEPAL). (2021). Datos y hechos sobre la transformación digital: Informe sobre los principales indicadores de adopción de tecnologías digitales en el marco de la Agenda Digital para América Latina y el Caribe. CEPAL. https://www.cepal.org/es/publicaciones/46766-datos-hechos-la-transformacion-digital-informe-principales-indicadores-adopcion

Comisión Económica para América Latina y el Caribe (CEPAL). (2023). Gobierno digital. CEPAL. https://www.cepal.org/es/temas/gobierno-digital

Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108–116. https://hbr.org/2018/01/artificial-intelligence-for-the-real-world

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008

Deloitte (2022). Global intelligent automation survey 2022. Deloitte Insights. https://www.deloitte.com/us/en/insights/topics/talent/intelligent-automation-2022-survey-results.html

European Commission. (2021). 2030 Digital Compass: The European way for the Digital Decade (COM/2021/118 final). Publications Office of the European Union.

https://op.europa.eu/en/publication-detail/-/publication/d4220021-8d20-11eb-b85c-01aa75ed71a1/language-en

Gartner (2023a). AI maturity & roadmap toolkit. Gartner. https://www.gartner.com/en/chief-information-officer/research/ai-maturity-model-toolkit

Gartner (2023b). Data lake definition and architecture overview. Gartner Glossary. https://www.gartner.com/en/information-technology/glossary/data-lake

Irani, Z., Abril, R. M., Weerakkody, V., Omar, A., & Sivarajah, U. (2023). The impact of legacy systems on digital transformation in European public administration: Lessons learned from a multi-case analysis. Government Information Quarterly, 40(1), 101784. https://doi.org/10.1016/j.giq.2022.101784

Janssen, M., Brous, P., Estevez, E., Barbosa, L. S., & Janowski, T. (2020). Data governance: Organizing data for trustworthy artificial intelligence. Government Information Quarterly, 37(3), 101493. https://doi.org/10.1016/j.giq.2020.101493

Kaplan, R. S., & Norton, D. P. (2008). The execution premium: Linking strategy to operations for competitive advantage. Harvard Business Press.

Khatri, V., & Brown, C. V. (2010). Designing data governance. MIS Quarterly, 34(4), 687–712. https://doi.org/10.2307/25750799

Kotter, J. P. (2012). Leading change. Harvard Business Review Press.

Marr, B. (2022). Big data: Using SMART big data, analytics and metrics to make better decisions and improve performance. Wiley.

Mazzucato, M. (2021). Mission economy: A moonshot guide to changing capitalism. Allen Lane.

McKinsey & Company (2023). The economic potential of generative AI: The next productivity frontier. McKinsey Global Institute. https://www.mckinsey.com/featured-insights/mckinsey-global-institute/the-economic-potential-of-generative-ai-the-next-productivity-frontier

McKinsey & Company (2024). Upskilling and reskilling priorities for the gen AI era. McKinsey & Company. https://www.mckinsey.com/capabilities/people-and-organizational-performance/our-insights/the-organization-blog/upskilling-and-reskilling-priorities-for-the-gen-ai-era

Müller, J. M., Buliga, O., & Voigt, K.-I. (2021). The role of absorptive capacity and innovation strategy in the digital transformation of organizations. Journal of Manufacturing Technology Management, 32(2), 420–441. https://doi.org/10.1108/JMTM-09-2019-0343

National Institute of Standards and Technology. (2024). The NIST Cybersecurity Framework (CSF) 2.0 (NIST CSWP 29). U.S. Department of Commerce. https://doi.org/10.6028/NIST.CSWP.29

Organization for Economic Co-operation and Development (OECD). (2023a). Government at a glance 2023. OECD Publishing. https://doi.org/10.1787/3d5c5d31-en

Organization for Economic Co-operation and Development (OECD). (2023b). The OECD digital government policy framework. OECD Publishing. https://www.oecd.org/en/publications/the-oecd-digital-government-policy-framework_f64fed2a-en.html

PwC. (2024a). Global annual review 2024. PwC. https://www.pwc.com/gx/en/global-annual-review/2024/pwc-global-annual-review-2024.pdf

PwC. (2024b). GenAI for next-gen governments. PwC. https://www.pwc.com/gx/en/government-public-services/assets/genai-for-next-gen-governments.pdf

PwC. (2024c). AI leadership maturity assessment. PwC. https://aimaturityassessment.my.pwc.com/

Rogers, E. M. (2003). Diffusion of innovations (5th ed.). Free Press.

Russell, S., & Norvig, P. (2022). Artificial intelligence: A modern approach (4th ed.). Pearson.

Vial, G. (2019). Understanding digital transformation: A review and a research agenda. MIS Quarterly, 43(1), 223–250. https://doi.org/10.25300/MISQ/2019/12910

Wamba, S. F., Gunasekaran, A., Akter, S., Ren, S. J. F., Dubey, R., & Childe, S. J. (2017). Big data analytics and firm performance: Effects of dynamic capabilities. Journal of Business Research, 70, 356–365. https://doi.org/10.1016/j.jbusres.2016.08.009

World Bank. (2022). Interoperability: Towards a data driven public sector (Equitable Growth, Finance and Institutions Insight – Governance). The World Bank. https://hdl.handle.net/10986/38520

Zuiderwijk, A., Chen, Y.-C., & Salem, F. (2021). Implications of the use of artificial intelligence in public governance: A systematic literature review and a research agenda. Information Polity, 26(4), 365–385. https://doi.org/10.3233/IP-210067

Published

2026-01-07

How to Cite

García-Herrera, A., & De Armas-Urquiza, R. (2026). Artificial intelligence in the management of civil aeronautics in Cuba: potential and challenges. Libraries. Research Annals, 21(Monográfico), 1–13. Retrieved from https://revistasbnjm.sld.cu/index.php/BAI/article/view/1078