Impact and integration of AI in public repositories: decolonisation, dissemination and universal Access to scientific knowledge

Authors

Keywords:

Research repositories, Artificial intelligence, Scientific knowledge, Scientific decolonization, Dissemination & access

Abstract

Objective: The aim of this study is to analyze the impact and integration of artificial intelligence (AI) in public repositories to promote the democratization and decolonization of scientific knowledge. Methodology: Through a literature review in academic databases: Web of Science (WoS), Scopus, Google Scholar and Dialnet, the applications of AI in content curation, accessibility and visibility of marginalized research were investigated. Results: Findings reveal that AI enhances the capacity of repositories to overcome language barriers, improve interoperability, and highlight research from underrepresented regions. Additionally, the integration of technologies such as machine translation and semantic analysis enables a more equitable and diverse dissemination of scientific knowledge, reducing dependence on traditional metrics and hegemonic editorial structures. Conclusion: The study concludes that AI-supported public repositories are key tools for reducing historical inequalities and fostering more inclusive and representative scientific communication. However, their implementation should follow a critical and equitable model to ensure equal opportunities for researchers worldwide. Contribution: Propose strategies that shift dependence on the current scientific ecosystem toward more inclusive and autonomous models, ensuring the visibility and preservation of scientific knowledge produced by traditionally marginalized communities.

Downloads

Download data is not yet available.

References

Abadal, E. (2021). Ciencia abierta: un modelo con piezas por encajar. Arbor, 197(799), a588. https://doi.org/10.3989/arbor.2021.799003

Aharoni, R.; Johnson, M., and Firat, Orhan (2019). Massively Multilingual Neural Machine Translation. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 3874–3884, Minneapolis, Minnesota. Association for Computational Linguistics. https://aclanthology.org/N19-1388.pdf

Álvarez Wong, B.I. (2017). Los repositorios digitales para la conservación. Un acercamiento a la preservación digital a largo plazo. Ciencias de la Información, 48 (2), 15-22. https://www.redalyc.org/pdf/1814/181454540003.pdf

Ammar, W., Groeneveld, D., Bhagavatula, C., & Beltagy, I. (2018). Construction of the Literature Graph in Semantic Scholar. Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations, 84–89. https://doi.org/10.18653/v1/N18-3011

Babini, D. (2011). Open Access in Latin America: Towards a scholarly communication model. REDALYC. https://bibliotecarepositorio.clacso.edu.ar/bitstream/CLACSO/9281/1/Open_Access_in_Latin_America.pdf

Beall, J. (2016). Predatory journals: ban predator from the scientific record. Nature, 534 (47607), 326. https://doi.org/10.1038/534326a

Caldera-Serrano, J. (2018). Repositorios públicos frente a la mercantilización de la ciencia: apostando por la ciencia abierta y la evaluación cualitativa. Métodos de Información, 9, (17), 74-101. DOI: https://dx.doi.org/10.5557/IIMEI9-N17-074101

Caldera-Serrano, J. (2019). La Unión Europea como cabecera y garante del sistema de evaluación y difusión de la producción científica. BiD: textos universitaris de biblioteconomía i documentación, 43. DOI. https://dx.doi.org/10.1344/BiD2019.43.23

Chawla, D.S. (2018). What´s wrong with the journal impact factor in 5 graphs. Nature Index. https://www.nature.com/nature-index/news/whats-wrong-with-the-jif-in-five-graphs

Chen, H., Tsang, Y. P., & Wu, C. H. (2023). When text mining meets science mapping in the bibliometric analysis: A review and future opportunities. International Journal of Engineering Business Management, 15, 1-15. https://doi.org/10.1177/18479790231222349

Davies, S.R. y Horst, M. (2016). Science communication: culture, identity and citizenship. London: Palgrave Macmillan. https:/doi.org/10.1057/978-1-137-50366-4

Davis, P. M.; Connolly, M.J.L. (2007). Institutional Repositories: Evaluating the Reasons for Non-use of Cornell University’s Installation of DSpace. D-Lib Magazine, 13 (3/4). https://www.dlib.org/dlib/march07/davis/03davis.html

Demetres, M. R., Delgado, D., & Wright, D. N. (2020). The impact of institutional repositories: A systematic review. Journal of the Medical Library Association, 108(2), 177–184. https://doi.org/10.5195/jmla.2020.856

FECYT (2021). Guía para la evaluación de repositorios institucionales de investigación. Fundación Española para la Ciencia y la Tecnología, FECYT. https://calidadrevistas.fecyt.es/sites/default/files/informes/2021guiaevaluacionrecolecta_vf.pdf

Gao, J., & Wang, D. (2023). Quantifying the Benefit of Artificial Intelligence for Scientific Research. arXiv preprint arXiv:2304.10578. https://arxiv.org/abs/2304.10578

García Canclini, N. (2004). Diferentes, desiguales y desconectados: Mapas de la interculturalidad. Barcelona: Gedisa. https://oibc.oei.es/uploads/attachments/123/garcia-canclini-nestor-diferentes-desiguales-y-desconectados-mapas-de-la-interculturalidad.pdf

Gaspar-Figueiredo, D., Fernández-Diego, M., Nuredini, R., Abrahão, S., & Insfrán, E. (2024). Reinforcement Learning-Based Framework for the Intelligent Adaptation of User Interfaces. arXiv preprint arXiv:2405.09255. https://arxiv.org/abs/2405.09255

Ginsparg, P. (2011). ArXiv at 20. Nature, 476(7359), 145–147. https://doi.org/10.1038/476145a

Hope, A. A., & Munro, C. L. (2019). Criticism and Judgment: A Critical Look at Scientific Peer Review. American Journal of Critical Care, 28(4), 242- 245. https://doi.org/10.4037/ajcc2019152

Keith, K. D. (2019). Ethnocentrism: Seeing the world from where we stand. En K. D. Keith (Ed.), Cross-cultural psychology: Contemporary themes and perspectives (2nd ed., pp. 23–38). Wiley Blackwell. https://doi.org/10.1002/9781119519348.ch2

Knoth, P., & Zdrahal, Z. (2012). CORE: three access levels to underpin open access. D-Lib Magazine, 18(11/12). https://doi.org/10.1045/november2012-knoth

Lagoze, C., & Van de Sompel, H. (2001). The Open Archives Initiative: Building a low-barrier interoperability framework. Proceedings of the 1st ACM/IEEE-CS Joint Conference on Digital Libraries, 54–62. https://doi.org/10.1145/379437.379449

Larivière, V., Haustein, S., y Mongeon, P. (2015). The oligopoly of academic Publisher in the digital era. PLOS ONE, 10 (6), e0127502. https://doi.org/10.1371/journal.pone.0127502

Merton, R. K. (1977) La sociología de la ciencia. Madrid: Alianza.

Moxham, N. y Fyfe, A. (2018). The Royal Society and the prehistory of peer review, 1665-1965. Historical Journal, 61 (4), 863-889. https://doi.org/10.1017/S0018246X17000334

National Center for Biotechnology Information. (2000). PubMed Central: An archive of life sciences journals. NCBI. https://www.ncbi.nlm.nih.gov/pmc/

Nature Editorial (2023). Overcoming the language barrier in science communication. Nature Reviews Bioengineering, 1, 305. https//www.nature.com/articles/s44222-023-00073-1

Nature Editorial. (2024). Doing good science is hard: Retraction of high-profile paper highlights reproducibility challenges. Nature. https://doi.org/10.1038/d41586-024-03178-8

Petersen, O. H. (2021). Inequality of research funding between different countries and regions is a serious problem for global science. Function, 2(6), zqab060. https://doi.org/10.1093/function/zqab060

Priem, J., Taraborelli, D., Groth, P. y Neylon, C (2010), Altmetrics: A manifesto, 26 October 2010. https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1187&context=scholcom

Prosser, David. (2003). Scholarly communication in the 21st century : the impact of new technologies and models. The Journal for the Serials Community. 16. https://serials.uksg.org/articles/10.1629/16163

Rao, S. X., Piriyatamwong, P., Ghoshal, P., Nasirian, S., de Salis, E., Mitrović, S., Wechner, M., Brucker, V., & Egger, P. (2022). Keyword Extraction in Scientific Documents. arXiv. https://doi.org/10.48550/arXiv.2207.01888

Russell, S. J., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach. Pearson.

Saeidnia, H. R., Hosseini, E., Abdoli, S., & Ausloos, M. (2024). Unleashing the power of AI: A systematic review of cutting-edge techniques in AI-enhanced scientometrics, webometrics, and bibliometrics. arXiv preprint arXiv:2403.18838. https://arxiv.org/abs/2403.18838

Valian, V. (2023). Science´s gender gap: the shocking data that revea lis true extent. Nature. Https://doi.org/10.1038/d41586-023-02139-x

Vantard, M., Galland, C., & Knoop, M. (2023). Interdisciplinary research: Motivations and challenges for researcher careers. Quantitative Science Studies, 4(3), 711-727. https://doi.org/10.1162/qss_a_00265

Wootton, D. (2015). The invention os science: a new history of the scientific revolution. Nueva York: Harper Collins.

Published

2025-12-04

How to Cite

Caldera Serrano, J. (2025). Impact and integration of AI in public repositories: decolonisation, dissemination and universal Access to scientific knowledge. Libraries. Research Annals, 21(Monográfico), 1–11. Retrieved from https://revistasbnjm.sld.cu/index.php/BAI/article/view/1094