Mapping of Global Publications on Artificial Intelligence: A Scientometric Analysis
Palabras clave:
Artificial Intelligence, Global Publication, Network analysis of co-authorship, Country-wise Analysis, Scientometric Study, Vosviewer, Biblishyni, ScopusResumen
Objective: Artificial Intelligence (AI) has emerged as an innovative technology with the potential to revolutionize various industries. This study uses a scientometric methodology to evaluate the current research in artificial intelligence comprehensively. Design/Methodology/Approach: This study employed scientometric indicators to identify key trends, patterns, and research gaps in the existing literature. A comprehensive dataset of 1803 academic papers on artificial intelligence, published between 2003 and 2023, was assembled and assessed using the Scopus database. Various scientometric instruments, such as Biblioshiny and VOSviewer, have significantly improved this study. Results/Discussion: The study's results provide substantial insights. The research indicated that the peak number of publications occurred in 2021, totaling 601 (33.33%), with the predominant document type being articles at 771 (42.76%), succeeded by conference articles at 428 (23.74%). Journal articles demonstrated the highest prevalence among various publication categories, comprising 771 (42.76%), followed by conference papers at 428. The United States emerged as the foremost contributor with 405 articles, followed by India with 234 publications. Conclusions: The University of Birmingham emerged as the most distinguished affiliation, boasting 17 publications and 1,670 citations. The "Lecture Notes in Computer Science (including the subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)" series is the most productive source, releasing 100 papers, of which 97 were cited. The author, Liu Xiaoxuan, is a distinguished figure with an h-index of 13 and a g-index of 14. Contribution: To assess the state of AI scientific production in the period 2021-2023, to contribute to scientific research.
Descargas
Citas
Amankwah-Amoah, J. (2017). Integrated vs. add-on: A multidimensional conceptualisation of technology obsolescence. Technological Forecasting and Social Change, 116, 299–307. https://doi.org/10.1016/j.techfore.2016.10.006
Basumatary, B., Maurya, P. K., & Verma, M. K. (2023). Mapping the Landscape of Indian Genomics Research: A Scientometric Analysis. Rejuvenation Research, 26(3), 75–87. https://doi.org/10.1089/rej.2023.0003
Borgohain, D. J., Bhardwaj, R. K., & Verma, M. K. (2024). Mapping the literature on the application of artificial intelligence in libraries (AAIL): A scientometric analysis. Library Hi Tech, 42(1), 149–179. https://doi.org/10.1108/LHT-07-2022-0331
Di Vaio, A., Hassan, R., & Alavoine, C. (2022). Data intelligence and analytics: A bibliometric analysis of human–Artificial intelligence in public sector decision-making effectiveness. Technological Forecasting and Social Change, 174, 121201. https://doi.org/10.1016/j.techfore.2021.121201
Dilsizian, S. E., & Siegel, E. L. (2014). Artificial Intelligence in Medicine and Cardiac Imaging: Harnessing Big Data and Advanced Computing to Provide Personalized Medical Diagnosis and Treatment. Current Cardiology Reports, 16(1), 441. https://doi.org/10.1007/s11886-013-0441-8
Elango, B., Rajendran, P., & Bornmann, L. (2017). A scientometric analysis of international collaboration and growth of literature at the macro level. Malaysian Journal of Library & Information Science, 20(2), 41–50.
Farooq, R. (2023). Mapping the field of knowledge management: A bibliometric analysis using R. VINE Journal of Information and Knowledge Management Systems, 53(6), 1178–1206. https://doi.org/10.1108/VJIKMS-06-2021-0089
Fiala, D. (2014). Sub-organizations of institutions in computer science journals at the turn of the century. Malaysian Journal of Library & Information Science, 19(2), 53–68.
Garg, K. C., & Tripathi, H. K. (2017). Bibliometrics and scientometrics in India: An overview of studies during 1995-2014, Part I: Indian publication output and its citation impact. Annals of Library and Information Studies (ALIS), 64, 28–36. https://doi.org/10.56042/alis.v64i1.14297
Glänzel, W., & Moed, H. F. (2002). Journal impact measures in bibliometric research. Scientometrics, 53(2), 171–193. https://doi.org/10.1023/A:1014848323806
Grant, M. J., & Booth, A. (2009). A typology of reviews: An analysis of 14 review types and associated methodologies. Health Information & Libraries Journal, 26(2), 91–108. https://doi.org/10.1111/j.1471-1842.2009.00848.x
Gunn, A. A. (1976). The diagnosis of acute abdominal pain with computer analysis. Journal of the Royal College of Surgeons of Edinburgh, 21(3), 170–172.
Gupta, B. M., & Dhawan, S. M. (2018). Artificial Intelligence Research in India: A Scientometric Assessment of Publications Output during 2007-16. DESIDOC Journal of Library & Information Technology, 38(6), 416–422. https://doi.org/10.14429/djlit.38.6.12309
Halepoto, H., Gong, T., & Memon, H. (2022). A Bibliometric Analysis of Antibacterial Textiles. Sustainability, 14(18), 11424. https://doi.org/10.3390/su141811424
Ho, Y.-S., & Wang, M.-H. (2020). A bibliometric analysis of artificial intelligence publications from 1991 to 2018. COLLNET Journal of Scientometrics and Information Management, 14(2), 369–392. https://doi.org/10.1080/09737766.2021.1918032
Huang, F., Teo, T., & Zhou, M. (2020). Chinese students’ intentions to use the Internet-based technology for learning. Educational Technology Research and Development, 68(1), 575–591. https://doi.org/10.1007/s11423-019-09695-y
Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y., Dong, Q., Shen, H., & Wang, Y. (2017). Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 2(4), 230–243. https://doi.org/10.1136/svn-2017-000101
Katz, J. S., & Martin, B. R. (1997). What is research collaboration? Research Policy, 26(1), 1–18. https://doi.org/10.1016/S0048-7333(96)00917-1
Kolker, E., Özdemir, V., & Kolker, E. (2016). How Healthcare Can Refocus on Its Super-Customers (Patients, n =1) and Customers (Doctors and Nurses) by Leveraging Lessons from Amazon, Uber, and Watson. OMICS: A Journal of Integrative Biology, 20(6), 329–333. https://doi.org/10.1089/omi.2016.0077
Loan, F. A., Bashir, B., & Nasreen, N. (2021). Applied artificial intelligence: A bibliometric study of an International Journal. COLLNET Journal of Scientometrics and Information Management, 15(1), 27–45. https://doi.org/10.1080/09737766.2021.1938742
Moller, A. M., & Myles, P. S. (2016). What makes a good systematic review and meta-analysis? British Journal of Anaesthesia, 117(4), 428–430. https://doi.org/10.1093/bja/aew264
Murdoch, T. B., & Detsky, A. S. (2013). The Inevitable Application of Big Data to Health Care. JAMA, 309(13), 1351. https://doi.org/10.1001/jama.2013.393
Naikar, S., Hatti, S., Paul, M., & Swamy, R. K. (2023). Artificial Intelligence (AI) in Academic Libraries: A Theoretical Study. In Multidisciplinary Approach to Information Technology in Library and Information Science (pp. 81–97). IGI Global. https://doi.org/10.4018/979-8-3693-2841-5.ch005
Pandey, S., Verma, M. K., & Shukla, R. (2021). A Scientometric Analysis of Scientific Productivity of Artificial Intelligence Research in India. Journal of Scientometric Research, 10(2), 245–250. https://doi.org/10.5530/jscires.10.2.38
Perianes-Rodriguez, A., Waltman, L., & Van Eck, N. J. (2016). Constructing bibliometric networks: A comparison between full and fractional counting. Journal of Informetrics, 10(4), 1178–1195. https://doi.org/10.1016/j.joi.2016.10.006
Ramesh, A., Kambhampati, C., Monson, J., & Drew, P. (2004). Artificial intelligence in medicine. Annals of The Royal College of Surgeons of England, 86(5), 334–338. https://doi.org/10.1308/147870804290
Rastegarmoghadam, M., & Ziarati, K. (2017). Improved modeling of intelligent tutoring systems using ant colony optimization. Education and Information Technologies, 22(3), 1067–1087. https://doi.org/10.1007/s10639-016-9472-2
Rodríguez-Rodríguez, I., Rodríguez, J.-V., Shirvanizadeh, N., Ortiz, A., & Pardo-Quiles, D.-J. (2021). Applications of Artificial Intelligence, Machine Learning, Big Data and the Internet of Things to the COVID-19 Pandemic: A Scientometric Review Using Text Mining. International Journal of Environmental Research and Public Health, 18(16), 8578. https://doi.org/10.3390/ijerph18168578
Shao, Z., Yuan, S., Wang, Y., & Xu, J. (2022). Evolutions and trends of artificial intelligence (AI): Research, output, influence and competition. Library Hi Tech, 40(3), 704–724. https://doi.org/10.1108/LHT-01-2021-0018
Small, H. (1973). Co‐citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for Information Science, 24(4), 265–269. https://doi.org/10.1002/asi.4630240406
Subramanyam, M., Natarajan, N. O., & Vivekanandhan, S. (2021). Scientometric analysis of Artificial Intelligence Research publications in Brazil during 2011-2020 from SCOPUS database. Mukt Shabd Journal, 10(10), 510–524. https://doi.org/10.0014.MSJ.2021.V10I10.0086781.111755
Tang, K.-Y., Chang, C.-Y., & Hwang, G.-J. (2023). Trends in artificial intelligence-supported e-learning: A systematic review and co-citation network analysis (1998–2019). Interactive Learning Environments, 31(4), 2134–2152. https://doi.org/10.1080/10494820.2021.1875001
Tran, B. X., Vu, G. T., Ha, G. H., Vuong, Q.-H., Ho, M.-T., Vuong, T.-T., La, V.-P., Ho, M.-T., Nghiem, K.-C. P., Nguyen, H. L. T., Latkin, C. A., Tam, W. W. S., Cheung, N.-M., Nguyen, H.-K. T., Ho, C. S. H., & Ho, R. C. M. (2019). Global Evolution of Research in Artificial Intelligence in Health and Medicine: A Bibliometric Study. Journal of Clinical Medicine, 8(3), 360. https://doi.org/10.3390/jcm8030360
Vinkler, P. (1988). An attempt of surveying and classifying bibliometric indicators for scientometric purposes. Scientometrics, 13(5–6), 239–259. https://doi.org/10.1007/BF02019961
Wang, B. (1992). Ten years of research and development of bibliometrics in China (1979–1989). Information Science, 13(1), 56–64.
White, H. D., & McCain, K. W. (1998). Visualizing a discipline: An author co-citation analysis of information science, 1972–1995. Journal of the American Society for Information Science, 49(4), 327–355. https://doi.org/10.1002/(SICI)1097-4571(19980401)49:4<327::AID-ASI4>3.0.CO;2-4
You, K., Dal Bianco, S., Lin, Z., & Amankwah-Amoah, J. (2019). Bridging technology divide to improve business environment: Insights from African nations. Journal of Business Research, 97, 268–280. https://doi.org/10.1016/j.jbusres.2018.01.015
Zhang, G., Liu, L., & Wei, F. (2019). Key nodes mining in the inventor–author knowledge diffusion network. Scientometrics, 118(3), 721–735. https://doi.org/10.1007/s11192-019-03005-2
Zhang, G., Wei, F., Guo, C., & Wang, Y. (2022). Analysing scientific publications in the field of mobile information systems using bibliometric analysis. The Electronic Library, 40(3), 160–176. https://doi.org/10.1108/EL-11-2021-0204
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Madhukar Togam, Satishkumar Naikar, C Krishnamurthy, Shashikumar Hatti

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.